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Feature Extraction

Abstract

Structural health monitoring is the process of implementim@rmage identification strategy for
aerospace, civil and mechanical engineering infrastructurelerthis context, feature extraction is
the process of identifying damage-sensitive information from medgslata. Feature extraction is
an essential component of a SHM system needed to convert raw datesinto useful information
about the structural health condition. The need for robust health monitmthgorognosis of
components in remote or difficult to access locations is drivingatiheancement of sensing
hardware and processing algorithms. The Wireless Intelligensisg Devices (WISD) research
project aims to attend to this need. In this document a feattrecton algorithm, referred to as
soft computing feature extraction algorithm, is developed as paheoWISD project to extract
damage-sensitive information from measured response data of @edbdrearing system of pitch
link components of the main rotor hub of a Lynx Helicopter. The feaxiraction algorithm is
based on a combining of discrete wavelet transform theory and lagizytheory. The results of
applying the proposed feature extraction approach to tie bar andlipitcbhata are presented.
Additionally, methods for pattern recognition and critical degradatietection of tie bar and
critically worn detection of pitch link are proposed. Results stavthe proposed algorithms are
capable of detecting critical degradation of tie bar and havaliligy to discriminate between
unworn (undamaged) and worn (damaged) pitch link bearings.

1. Introduction

This report is generated by the University of Bristol to descrilearebl work carried out in the area
of Feature Extraction as the fourth deliverable from the Wiselmtelligent Sensing Devices
(WISD) research project. The University of Bristol (UB)nember of the WISD consortium,

which other members are Westland Helicopters Ltd (WHL), TRW KioflERW), and Systems

Engineering & Assessment Ltd (SEA). The WISD research@rgesupported by The Department
of Trade and Industry (DTI).

The need for robust health monitoring and prognosis of components irerenifficult to access
locations is driving the advancement of sensing hardware and pngcakgprithms. The Wireless
Intelligent Sensing Devices (WISD) research project ainattend to this need. Therefore, the
main goal of the WISD project is to advance the development @hawmous, self-powered,
wireless sensors with built-in intelligence, in order to provide @urate health state and life
prediction of engineered structures. It is intended that a Wi bhen only transmit information
when a feature of the state of health of the monitored structaralteaed and requires attention or
maintenance. Thus, it is expected that an array of WISDgreMide an efficient alternative to the
current approach of streaming raw data back to a central magitamit. The target application for
the sensing system developed by the WISD project is healthariogiof the main rotor hub of a
Lynx Helicopter.

In this report the main findings of ongoing research in the arézatire extraction and statistical
model development (pattern classification), under the context of tlsO\We#search project, are
presented. Thus, in the remainder of this section some backgraond concepteatedrésrst the

concept of structural health monitoring is reviewed, then a definitiovhat is considered a WISD
is presented together with a review of data interrogation procedsegsin the past in wireless
sensor devices. Then, in section 2, after providing a short descriptiwavefet theory and fuzzy
logic theory, a feature extraction algorithm referred to asstife computing feature extraction

1



algorithm, which combines these two technologies, is proposed. Thesre§ulie algorithm
applied to tie bar data and pitch link data components of the mainhudtoof a Lynx Helicopter
are presented in sections 3 and 4, respectively. Finally, conclusichss work are given in
section 5.

1.1  Structural health monitoring

Structural health monitoring (SHM) can be defined as the procesmpdémenting a damage
identification strategy for aerospace, civil and mechanicgineering infrastructure [Farrar et al,
2001]. The goal of implementing a SHM system is to improve thetysaind reliability of
engineering structures by detecting damage beforedhesaa critical state. Therefore, the process
of implementing a SHM system involves the observation of a structureechanical system over
time using periodically spaced measurements, the extractia@amohge-sensitive features from
these measurements, and the statistical analysis of #eseels to determine the current state of
health of the system. The output of this process is periodicallyagpd#brmation regarding the
ability of the structure or mechanical system to continue to periisr desired function in light of
the inevitable ageing and degradation resulting from operational environments.

The implementation of a SHM system can be summarised intothestep flow chart shown in
figure 1 [Farrar et al, 2001] [Farrar et al, 2006]. A short dpson of each one of these processes
is given below.

Operational evaluation: This processlefines and quantifies the damage that is to be detected and
describes the benefits to be gained from implementing the SKHMmy This process also sets
what unique aspects of the system will be monitored and how to ipettiermonitoring as well as
specifying the features of the damage to be detected.

OPERATIONAL EVALUATION

!

DATA ACQUISITION
DATA: / l

NORMALISATION

CLEANSING O E— FEATURE EXTRACTION
FUSION
COMPRESSION
\ 4
STATISTICAL MODEL
DEVELOPMENT

Figure 1: Flow chart for implementing a SHM system.

Data acquisition: This component of the SHM process involves selecting the ganitaethods,

the sensor types, number and locations, and the hardware platforntdcacdaisition, storage,
processing, and communication. It is necessary to remark thatatheacquisition and sensing
systems do not measure damage. Rather, they measure the res@oegstem to its operational
and environmental loading or the response to inputs from actuators dedbedth the sensing



system. They deliver raw measurement data. However, dependitite ®sensing technology
selected and the type of damage to be identified, the sensor seadihgle features that may be
more or less directly correlated to the presence and location of damage.

Feature extraction: Feature extraction is the process of identifying damagetisensformation
from measured data. A damage-sensitive feature is some qsstitracted from the measured
system response data that is correlated with the preserdmmaige in a structure [Farrar et al,
2006]. The main objective of the feature extraction process igracedamage-sensitive features
that change in some consistent manner with increasing damage IUltimately, the goal is to
distinguish a damaged structure from an undamaged one based ondbte@x@atures in a robust
and accurate manner. Two alternative feature extraction methodsdeen mainly proposed in the
SHM literature; model based and waveform based. The model bagadefextraction method
consists on fitting some model, either physics based or data basleel,nheasured system response
data. The parameters of these models or the predictives eseociated with these models then
become the damage-sensitive features. Alternatively, the wavéfised approach extract features
by directly comparing the sensor waveforms or spectra of these wasgefor

Satistical model development: This process is concerned with the implementation of the
algorithms that analyse the distributions of the extracted fesaturerder to determine the damage
state of the structure. The algorithm used to perform this taske categorised into three types:
(1) Group Classification, (2) Regression Analysis, and (3) Oubletection. The selection of the
appropriate algorithm to use depends on the data available. Foplexahgorithms performing
supervised learning can be applied when examples of data atabBvdrom damaged and
undamaged structures. If data were available only from the uiggansé&ructure, then an algorithm
implementing unsupervised learning would be more adequate. Thécsthtdels are typically
used to answer a series of questions regarding the presence, location, typerdraf damage.

Inherent in the data acquisition, feature extraction and statistiodel development sections of the
SHM process are data normalisation, cleansing, fusion and coroprfgrrar et al, 2006]. Under
the context of SHM, data normalisation is the process of separeltanges in sensor reading
caused by damage from those caused by varying operational anohememtal conditions. Data
cleansing is the process of selectively choosing data to pass, @n teject from, the feature
selection process. Data fusion is the process of combining infomfadim multiple sensors in an
effort to enhance the fidelity of the damage detection prodeasa compression is the process of
reducing the dimensionality of the data, or the feature exttdicien the data, in order to facilitate
an efficient storage of information and to enhance the statigtieatification of these parameters.
These four activities can be implemented in either hardwareftwvage and usually a combination
of the two approaches is used.

The two processes of feature extraction and statistical modelogenent for feature classification
commonly are referred together to as data interrogation praseduiThey are the essential
components of a SHM system needed to convert the sensor data intanfseiation about the
structural health condition. Furthermore, to successfully impleraeBHM strategy, the data
acquisition system will have to be developed in conjunction with thet® idéerrogation
procedures.

12 WirdessIntelligent Sensing Devices
In general terms, an intelligent sensing device includes a myefoordata storage; a radio

frequency communicator configured to receive signals from and titasggnals to an external
device; a processor; one or more sensors; and a power supply. Toenkegnent of a WISD is
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the onboard processor, which allows the device to perform its own ldealnd@rrogation tasks,
only transmitting the results. Consequently, a significant remtudta power consumption is
achieved (It has been demonstrated that one byte of data trsiosn@ignsumes the same energy as
approximately 11000 cycles of computation using low powered DSPs [Tetrahe003]).

The main technological advancement in a WISD is its abilitpaéie decisions, not simply stream
raw data. Accordingly, the output of a WISD is a feature ofthecture or a heath state indicator
rather than raw data itself. Furthermore, by being self-palvarel equipped with a wireless
transmitter, a WISD is able to act autonomously or be triggeradtedy to provide an intelligent
assessment of the state of health of the monitored structure.

1.3  Featureextraction algorithmsfor wirelessintelligent sensing devices

Recently, research studies have been carried out in order to de\eloge fextraction algorithms
for SHM capable of being implemented in the onboard processorrefess intelligent sensing
devices. Tanneet al [2003] implemented an SHM algorithm in an off-the-shelf wirelesssing
and data processing hardware known as “Motes”, which were dedebitpthe University of
California, Berkeley. The Mote system consist of modular cirbo@rds integrating sensors,
microprocessor, A/D converters, and wireless transmittesfdhem powered by two AA batteries
[Kurataet al, 2005]. In the implemented SHM algorithm the cross-correlationicmeft between
the time responses measured from two accelerometers mounded agoint in a demonstration
structure was used as the feature for damage detection. Thugedardatected using a statistical
process control approach [Montgomery, 2005] [Setted., 2000]. Firstly, in a training phase, data
from a known healthy condition of the structure were used to estab&supper and lower bounds
of the statistical process control. The control limits weteasg/ + 1.50, based on the cross-
correlation coefficient sample mearand standard deviatiom The values of the cross-correlation
coefficients were calculated using a recursive algorithm hen wireless sensor device and
broadcasted to a base station connected to a PC. After the boundslelsted on the PC, they
were hard-coded back onto the processor on the wireless seesondly, in a monitoring phase,
the cross-correlation coefficients were calculated from nemdasured acceleration time signals
and checked against the previously determined control limits to de&iimany of the cross-
correlation values was an outlier. Finally, damage is dectaeed on the frequency of occurrence
of outliers. A binary result could then either be shown on the moE3’dr transmitted wirelessly
to a base station. The whole process proved to be, however, vied Jimllowing only the most
rudimentary data interrogation algorithms to be implemented and reotompletely autonomous
operational mode.

Lynch et al [2004] developed a hardware system to implement SHM algorithmg affithe-shelf
components. The hardware platform includes sensing circuits aviceless transmission unit
coupled with a computational core incorporating two microcontrollenking in a master-slave
configuration for power efficiency. This hardware systellows a decentralised collection,
analysis and broadcast of a structure’s health. The feattraction and damage detection
algorithm implemented in this hardware platform is the skegistime-series approach proposed by
Sohn and Farrar [2001]. In this approach the time histories of vibrsigoals of the analysed
structure in its undamaged state are measured under a varietivicdhmental and operational
conditions. Then, after normalisation, an autoregressive (AR) modgineihsionp (denoted as
AR(p)) is fitted to the measured data:

p
Yo = quyk—i +r, (1)
i=1



whereyi denotes the response of the structure at sample kndgxare coefficients on the previous
observations/., andr, is the AR model residual error term. As it is assumedttigatesidual

error r,” of the AR model is influenced by the unknown input to the systerac@nd time-series

model, an autoregressive with exogenous inputs (ARX) model of dimeasiad b (denoted as
ARX(a, b)) is adopted to model the relationship between the residual erdotha measured
response of the system:

a b
Yk :zai Yi-i +Zﬂjrky—j +g! 2
= =0

where a; and 3, are coefficients on past measurements and the residualoétter AR model,

respectively. The coefficients of the AR-ARX time sern@sdels and the standard deviation of the
residual error of the fitted ARX models form a database (derytdlde superscript DB) of baseline
models describing the structure in its undamaged state. Tiealesf the ARX modelg!, is the

damage sensitive feature used to detect the existence of damage in theestruct

To detect damage, after measuring the response of the stryctur@n unknown state (damage or
undamaged), an AR model is fitted. The coefficients of this AR mam@ethen compared to the
library of baseline AR-ARX coefficients. The closest ARXAR1odel pair is selected from the
library based on the Euclidian distan€g, of the newly derived AR model and the database AR

model coefficientsp’ and b"®, respectively. This is:

D=3 (% -1 @3).

Thus, if no structural damage is experienced ardoterational conditions of the two models are
close to one another, the selected AR model froen database will closely approximate the
measured response. On the contrary, if damagbdassustained by the structure, even the closest
AR model of the database will not approximate treasured structural response well. Therefore,
the measured response of the structure in the wikistate yx, and the residual error of the fitted

AR model, b}, are substituted into the database ARX model terdene the residual errog,, of
the ARX model:

a b
Yk :ZaiDByk—i +ZﬁjDBrky—j +&/ (4)
i=1 i=0

If the structure is in a state of damage, the stehdeviationo(g)) of the ARX model residual,
&), will vary from the standard deviatiom(£>°) of the ARX model residual corresponding to the

undamaged structures’®. In particular, damage can be identified whenrtté of the standard

deviation of the model residual error exceeds astiwld value,h, established from good
engineering judgment [Sohn and Farrar 2001]:

a(&)
a(&)

>h (5)



The statistical time-series damage detection method wasnmepted in the proposed wireless
sensing unit as is shown in figure 2. Given the memory liioita of the wireless sensing unit,
storage of a database of AR and ARX coefficients was done usiagi@ete data server. The
wireless sensing unit is primarily responsible for the determination of édRehtoefficients as well
as processing the data through the ARX model that is obtainedtfrememote server. The
wireless sensing unit, after calculating the ARX residuebre makes the ultimate decision if
damage is potentially present in the system within the vicinity of its cegpaode.

@
(7¢ﬁ

Wireless Sensing Unit Remote Data Server

r’ ™ _h ™,
Acquire measurement data and locally store in the {8} Acquire the AR process model from
wireless sensing unit. the wireless sensing unit.

2\- Normalize measurement data (6) Find closest AR model in stored
— database by minimizing the
7= Yy difference of model coefficients
] (T}" n
< 3) Determine coefficients of an AR(p) D= Z {h:_)]; _ _r.-};.--}z
\f» Transmit AR(p) coefficients to centralized server \.L/ Send the corresponding ARX model

and standard deviation of the ARX
model residuals

()

) Receive the coefficients of an ARX model from the
database with an associated standard deviation of
model's residual error

———)

! Process measurement data with the ARX model 1o
determme resmlual error of measurement data

b
Vi = ] l‘; P+ § .uI)]i \

i=l
/ﬂ Determine if damage is presem in the structure

:Iﬁj)z;?
\ TVE;

Figure 2: Implementation of the statistical time-series feature extraeind damage detection
approach in a wireless sensor unit [Lyrtll 2004].
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2. Soft computing featur e extraction algorithm

It is known that current helicopter rotors spin at near constantutevmod per minute (RPM)
throughout a flight mission. Consequently, it is expected that sigwang from monitored
components of the main rotor hub will be periodic signals. Iniadditata signals provided by
Westland Helicopters Ltd from results of fatigue testing efotars, components of the main rotor
hub of a Lynx Helicopter, show a periodic (or cyclic) behaviour. Henceis work it is assumed
that the measured signals from which damage sensitive featrgegoing to be extracted are
periodic signals with a known period (or frequency).

A feature extraction approach, referred to as soft computirigréeeaxtraction algorithm (SCFEA),
has been proposed as part of the WISD research project in orientdy damage sensitive
information from periodic signals. This approach has been develogeedhsn the work of Let

al [2004]. The SCFEA combines wavelet transform theory and fuzzy tbhgory. The general
idea explored in the proposed approach is as follows, if a featwter can be extracted which
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represents the characteristics of a cycle or a serieglgfscof a signal, then this feature vector can
be used to perform comparisons with a cycle or a series oéscydl the signal obtained over
different periods of time. This in turn will allow the possifilio assess how the signal is evolving
until failure is reached and this outcome can be used for pattargnidon and damage detection.
In other words, the main postulate is that the change of the dyheinaviour of the system being
monitored can be expressed in terms of changes in the feattioesvextracted from every cycle
(or series of cycles) of the measured signals and compared over time.

The effective content of information in a signal is usually giveitsi entirety (low frequency) or at
slight positions (high frequency). Thus, if two signals (or cydésa signal) are apparently
different, then their traits can be extracted in very chfiié features. But, if the two signals (or
cycles of a signal) are approximately the same, then tredinréss should be very similar. Hence,
the feature of a signal to be extracted should be sensitive ermbglig effective information, and
should be robust enough to tolerate noise and distortion. However, sgnaitigirobustness are
mutually exclusive in nature. In that sense the discrete letatransform is used as a tool to
decompose a signal into approximation and detail signals, associated witidlowgh frequencies.
While, due to its ability to tolerate imprecision and uncertaifityzy sets are used to provide a
robust representation for the signal information. The concept of 8&tgys used then to serve as a
bridge between sensitivity and robustness in feature extractioa fagnal. The sensitivity in
feature extraction of the SCFEA can be adapted by tuning aasiag the number of fuzzy sets
defined for the detail and approximation signals. The output of tREAQVill be a feature vector
that can be used for pattern classification.

In the next sections the theoretical background used to develop BeASE reviewed. First, an
overview of wavelet transform theory is given. Then, the main conadpfazzy logic are
presented. After that, the proposed feature extraction algorithm is presented.

21  Wavelet transform theory

Wavelet transform theory was originally developed in the 1980abaut the same time by
mathematicians and seismologists as a new tool for the freqaeatysis of geophysical signals
[Goupillaud et al., 1984] [Grossmann and Morlet, 1984] [Daubechies, 1988]. Over the last two
decades, due to its many useful features, the wavelet tnankfs been used in a broad range of
applications, such as seismic records analysis, image codingpededtogram analysis, feature
extraction, pattern recognition, voice processing, image processgmgl denoising, and data
compression.

The wavelet transform (WT) can be viewed as an alternatitbe traditional Fourier transform
(FT) for the analysis of signals. Unlike the FT analysis,civi@mploys complex exponential or
global sine and cosine functions as the basis functions, the WTianags single localised “small
waves” or wavelets as the basis functions. Each wavelet dancmmonly referred to as basis
wavelet or mother wavelet, is defined by two parameterscéke grelating to frequency) and its
position (relating to time).

Although the FT has proven to be extremely valuable to analyse mertodie-invariant, or

stationary phenomena, the frequency spectrum of a signal asltakthe FT is not localised in
time due to the infinite sinusoid basis functions. This characdterisplies that the Fourier
coefficients of a signal are determined by the entire kignpport. Consequently, any local
behaviour of a signal cannot be easily traced from its FT.ontrast, in WT analysis long waves,
corresponding to larger scale values, are used for more @resisfrequency information and
shorter waves, corresponding to smaller scale values, are uselefdime locality of high-
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frequency information. Therefore, the WT is a more suitable anenbavtool for the analysis of
transient, time-varying, or non-stationary phenomena, as both frequsenales) and time
information can be obtained simultaneously from the WT of a sighEnce, the two theories,
rather than competing, are complementary since there are ajgpigc where the WT analysis is
better suited than the FT analysis and vice versa.

2.1.1 Continuouswavelet transform

The Continuous Wavelet Transform (CWT) of a functiig) O LR) (the space of square
integrable functions) is defined by

109 = [ r g ©

whereu,s I R are real continuous variablesz 0. The continuous wavelet transform comprises the
continuous translation and dilation of a basis function defined by:

va0= o2 )

where the factoﬂ/\/g is used to normalise the energy so that it stays at thelsagldor different
values ofs andu. The wavelet functioy, ((t) is expanded in time (or space) wheeis increased,

and is displaced in time (or space) whers varied. For this reasos,is called the scaling (or
dilation) parameter, which captures the local frequency content, &ndalled the translation (or
shifting) parameter, which localises the wavelet basis function at tarmeand its vicinity.

2.1.2 Discretewavdet transform

In many practical applications the CWT is discretised in tairgg and dilation parameters for
computational efficiency. Thus, instead of calculating the wawedlasform over the continuous

range ofs andu, the wavelet transform is calculated only at the discrete salaéined bys=s;’

and u=nu,s;'. Then, by substituting these discrete scaling and translatiaresvah (7) it
becomes:

Y1) = J%w(t _ZE’PS‘; j= sV (st -nu,) (8).

wherej, n 0 Z (the set of all integers) > 1 andu, > O are fixed dilation and translation steps,
respectively. Note in (8) that the translation fackphas been made dependent on the dilation step
S. Most commonlysy, andug are selected in order to have a dyadic grid along the frequerdcy a
time axes. This i =2, anduy = 1. Therefore, by substituting these values in (8) it gives:

—n27} , A
W,a0) = %w[t s J=2”2w(2't—n) jn0z ).




Thus, any signal ih*[R) can be represented as a superposition of dyadic dilations arldttomss
of a single wavelet functiogy(t) (also known as wavelet series representation), this is:

f() =Y d, ¢, =Yd,,2 @'t -n) (10)

where the two-dimensional set of coefficied{s is called the Discrete Wavelet Transform (DWT)
of f(t) and (10) is the inverse DWT. If the functiogs,,(t) form an orthogonal basis for the space

of signals of interest, then a more specific form of the DWdIcating how thel, ,'s are calculated
can be written using the inner product operator as:

F) =2 (¢.0, FOW;.0 (12).

Recall that the inner product of two functiotf§ andy(t) is defined as:
(x@), y(©) = [ x®) y(t)dt (12),

and two waveletg, ,(t) andy,,(t) are orthogonal if their inner product is equatéwo, this is:

(@,,0.0,,,0) = @, (Od(E) =0 (13).

The construction of these orthogonal bases canrbetlg related to the theory of multiresolution
signal approximations [Mallat, 1989]. Specificalthis leads to an equivalence between wavelet
bases and quadrature mirror filters used in discnetltirate filter banks. These filter banks can
then be used to implement a fast DWT algorithm tkeqtires onlyO(N) operations for signals of
sizeN. This implementation of the DWT is reviewed next.

Lets consider the wavelet series representatioa sfluare integrable functid(t) introduced in
(20):

fM)=2d¢.0)=2.d,2"p@'t-n) (14)
in in
for everyj O Z the following functions can be defined [Coca anitirig)s, 2001]:
w, (t) :Zn“djynz//,.,n(t) :zi/zzn:djynz//(zit—n) (15).
It follows that the functiori(t) can then be expressed as:

FE) =D W, (£) =+ Wy (t) +wy (1) + Wy (t) +--- (16).

0z

But, since the scale is roughly speaking a substitar frequency in the time domain, equation (16)
can be interpreted as a decomposition of the fandft) in frequency bands, where higher values
of j correspond to higher frequency bands.

If all the functionsw(t) are added together up to a sgdleZ, then a new set of functiogs; (t)} .,
can be defined as:



V=3 we a7)

Then, for every 0 Z, the functionsy(t) can be substituted in (16) to obtain:
F(1) =, (O) + W, (1) + W, (1) +--- (18).

Continuing with the frequency band interpretation of equation (16), equdt8) can be interpreted
in the frequency domain as a decomposition of the funclﬁt()w), the FT off(t), in a low-
frequency band, (w) , plus additional, high-frequency bands represented/fw) + W, (w) +---.
From an approximation point of view(t) is a coarse approximation of the functigt) with the
additional, finer detail provided by the functiong,(t)+w,,,(t)+---. The value ofj which

corresponds to the initial resolution level controls the amount of detail contained in thenfui(o
relative to the original functiof{t).

The alternative representationf@) given in equation (18) can be realised through the utilisation of
a scaling basis functiog(t) O L%R) which dyadic dilations and translations are used to expand the
functionsvi(t), for every integey, in the same wayy(t) is used to represem(t) in (15). This
yields the following representation ef(t) in terms of dilating and translating the scale basis
function:

v(t)=>.c @) =2"> ¢, @2't-n), jOZ (19)

nfz

where {cn} are the coefficients of the expansion. Consequently, substit(itbjgand (19) in (18)
the functionf(t) has a new series representation in terms of scaling and whavelgons [Coca and
Billings, 2001] [Burruset al., 1998]:

F0=Yc,0.0+>Sd w0 (20).

n0Z i niz
A scaling function which can be used to expand smqyare integrable function as in equation (20)
for any integerj is said to generate a multi-resolution approxioratover the space of square
summable functions [Mallat, 1989] [Burresal., 1998].

The coefficients in the wavelet expansion (20) ealed the DWT of the signdlt). If the
functions g, ,(t) andy; ,(t) are orthogonal, then thdevel scaling coefficients are found by taking

the inner products:
Co =(F(0).4,1)=[ f ()2 @'t -n)t (21)

d,, = (F@©).@;,0) =] )2 @@t -n)dt (22).

In practice, instead of dealing directly with theakng and wavelet functions, a method using the
theory of filter banks has been developed to cateuhe coefficients;, andd,» in a recursive way.
First, a relationship between the expansion cdefits at a lower scale level in terms of those at a
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higher scale is derived using the basic recursion equation, also kreowe anultiresolution
analysis equation [Burrue al., 1998]:

@t) = > h(k)v2¢(2t - k) (23)

this equation states that the scaling funcigft) can be expressed in terms of a weighted sum of
shifted ¢2t). Thus, by scaling and translating the time variable it gives:

@2't-n) = > h(k)V2¢(2(2't —n) —k) =>_ h(k)v2¢(2'*t - 2n - k) (24)

which, after defining a change of varialste= 2n + k, and substituting it in (24), results in:

@2't—n)=> h(m-2n)}J/2¢(2'"t -m) (25).

Then, using (25) and interchanging the sum and integral, (21) can be written as:

¢, = 2 h(m=2n)[ f ()2 (21"t - m)ct (26)

but the integral in (26) is the inner product with the scaling function at a scakelogiving:
¢, => h(m-2n)c,, . (27).

Following the same procedure the corresponding relationship fowéwelet coefficients is
obtained:

divﬂ = Z g(m_ 2Iﬂl)Cj+1,m (28)

Equations (27) and (28) show that the scaling and wavelet coeffiaediferent levels of scale
can be obtained by convolving the expansion coefficients at jsbgl¢he time-reversed recursion
coefficientsh(-k) andg(-k) then down-sampling or decimating (taking every other term, tha e
terms) to give the expansion coefficients at the next levgtlof In other words, the scajle-
coefficients are “filtered” by two FIR digital filtera/ith coefficientsh(-k) and g(-k) after which
down-sampling gives the next coarser scaling and wavelet coefficients.

The block diagram of figure 3 illustrates the implementation of s (27) and (28). In this
figure the down-pointing arrows denote a down-sampling by two and thelbdtiogs denote FIR
filters or equivalently a convolution hy-k) or g(-k).

9 > |2 —>d
Gi+1 ——-Vl::
h(-K) 2 ¢

Figure 3: Representation of the implementation of a two-band analysis filter bank.
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The filer implemented b¥a(-k) is a lowpass filter, and the one implementedypk) is a highpass
filter. The filters are designed so that the impulse respondieedilter g is related to the impulse
response of the filter by:

g(k) =(-1)"*h@-k) (29).

Equation (29) specifies that the filtgris the mirror filter ofh. In signal processingy andh are
calledquadrature mirror filters.

Note that the total number of data points at the output of thelddigk is the same as the number of
data points coming in. The number of data points is doubled by havingltive, fout because the
down-sampling, this number is halved back to the original number. If mommgesition levels
are required, then the splitting, filtering, and decimation structarebe repeated on the scaling
coefficients as is illustrated in figure 4.

» 9(-K

Ci+1 — » 9(-K

BRI R 12

l2 —Vdj

\ 4

v

l2 —» 01

\ 4

G

L] hek

\ 4

lz —» G

Figure 4: Implementation of a two-stage two-band analysis filter bank tree.

For a more detailed description of filter banks and it utilisato implement the DWT the reader is
referred to [Burrugt al., 1998], [Mallat, 1989], and [Strang and Nguyen, 1997].

2.2  Fuzzylogictheory

Imprecision and uncertainty are inherent concepts to the inextace rd human reasoning. As a
result, our way of interpreting the world is generally seen &metion of vague propositions,
uncertain data and appreciative judgements. However, this way of thiskingtaken into account
in traditional logic, where only two fundamental premises exigseé and false, 0 and 1. Lotfi A.
Zadeh noticed this and created a new logic, called fuzzy logdlz, 1973], in order to attempt to
capture the uncertainty present in our reasoning when interptieéirvgorld. This logic is based on
the theory offuzzy sets proposed by Zadeh [1965] in his seminal paper of 1965. The main concept
in fuzzy sets theory is that an object is no longer restriddaetcompletely a member or not a
member of a set. Instead, any element is allowed to haveda gfanembership intermediate
between full membership and non-membership, this is a membership value in taeamigel [0,1].
In other words, whereas in traditional sets theory a set hag bbeders, in fuzzy sets theory a
fuzzy set has soft borders allowing an object a smooth transittaredr® being a member or not a
member of a particular set. This smooth transition is chaisetieby a membership function,
which gives fuzzy sets flexibility in modelling commonly udejuistic expressions, such as “the
temperature is high”, or “the speed is fast”.

Formally, a fuzzy set is defined as follows. Xebe a universe of discourse (e.g. a space of points

or objects) and denote a generic element X¥f Then, a fuzzy seA in X is characterised by a
membership functionu, : X - [01] which associates with each elemeanof X a real number

12



UA(X) In the interval [0,1], with the valug,(x representing the degree (or grade) of membership
of xin A [Zadeh, 1977b]. Thus, a fuzzy gein X can be represented as the set of ordered pairs:

A={(x, 1, () I xO X} (30)

where 0< ,(X) < 1 with ,(x) =0 represents no membership apgd(x) = represents full
membership. As an example, Mtconsist of the ages of all people. Three fuzzy subsets of X,
Young, Middle aged, and Old, are shown in figure 5 representing those pkaplare young
middle aged and old, respectively. Hence, these membership functiensidetthat a 30-years-
old person belongs equally to the fuzzy sets Young and Middle Agédhe or he does not belong
to the fuzzy set Old.

Young Middle Aged Old

-

o
©
]

o
'
T

Degree of Membership
o
[=>]

o
[N}
)

‘ i . .
00 10 20 30 40 50 60 70 80 Q0
Age

Hyoung B0) =05 Hyidde aged B0 =05y, E0=0

Figure5: Fuzzy sets defined to represent the age of people.
Similarly to traditional set theory, the corresponding basic apesbf intersection, union, and
complement, are defined in fuzzy logic. The operations of irdeoseand union are specified in
general by a T-norm and a T-conorm operator, respectively glahgl997]. Below, the two more
frequently used T-norm and T-conorm operators are presented.

1. Intersection: The intersection of two fuzzy sefsandB is a fuzzy seC, denoted a€ =
AnB, whose membership function is related to thosk ahndB by:

MINIMUM: 446 (X) = fp6(X) = Min(LL, (%), 4 (X)) (31)
Algebraic product: i (X) = a,s(X) = (%) Qs (X ) (32)

2. Union: The union of two fuzzy se#s andB is a fuzzy seC, denoted a€ = ALIB, whose
membership function is related to thoséAandB by:

Maximum: 4. (X) = Ky (X) = Max(U,(X), ko (X)) (33)
Algebraic SUmM: £ (X) = fap (X) = Ha(X) *+ g (X) ~ (%) Bl () (34)

3. Complement (negation): The complement (negation) of fuzzy et denoted byA, is
defined as:

1 () =1 11,(%) (35)
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Examples of these basic operations are presented in figure 6.

Fuzzy intersection Fuzzy union Fuzzy complement

Minimum Maximum
By 0 = inp2,06), 125 0)) 2,5 0) = e (g, o), p15(0)) () = 1= g, (0)

u i i

1 1 1
o
1 0.5
M, 14, /\

Algebraic product N Algebraic sum ' *
g, 200 =, () g (0 H)‘"‘!AUB (20 = g, GO+ 2500 — 1,00 1, (0)

X X

-

Figure 6: Basic operations on fuzzy sets.

Other important operations in fuzzy sets, which are also directrajea¢ions of operations on
ordinary sets are:

4. Cartesian product: Let A andB be fuzzy sets ifX andY, respectively. The Cartesian
product of A and B, denoted byAxB, is a fuzzy set in the product spaxXgY with the
membership function:

Minimum: Hia (X Y) = ML), o (¥)) (36)
Algebraic product: Hna (% Y) = 1, () T (Y ) (37)

The Cartesian product of two fuzzy sets is charsetd by a two-dimensional membership

function. Figure 7 shows an example of a two-disn@mal membership function generated by
performing the Cartesian product of two fuzzy sedisig the algebraic product operator. The same
figure also shows the contour plot generated bywledimensional membership function.

Hnal6Y) = 1O Lpe(Y) I

Figure 7: Cartesian product using the algebraic productaiper
5. Binary fuzzy relation: Let A andB be two fuzzy sets in the universes of discoxsadY,

respectively. Then, a fuzzy relation of the forvr= B, denoted byR, from the fuzzy set
ALIX to the fuzzy seBL1Y, is a fuzzy subset of the Cartesian prod(ct. This is:
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R={((x ), (X, Y)) | (%, y) DX XY (38)

where £, (x,y )is a two-dimensional membership function, characterised by:

Minimum: He(%,Y) = Haa (%, Y) = Min(, (X), 4o () (39)
Algebraic product: U Y) = fpa (6 Y) = 1,0 (e (¥) (40)

Common examples of fuzzy relations are expressions of the fosms'A, theny isB”, e.g. “If xis
large theny is small”. Fuzzy relations of this kind are repeatedly used in fuzzy inference systems.

Fuzzy relations in different product spaces can be combined throeghpasition operation.
Different composition operations have been suggested for fuzzionsla depending on the
operator selected to perform the fuzzy intersection and union operafidrestwo most popular
composition operations are thex-min andmax-product, which are presented below.

6. Max-min composition: Let R; and R, be two fuzzy relations defined okxY and YxZ,
respectively, Then, the max-min compositiorRpfandR; is a fuzzy set defined by:

RoR, ={[(X, Z),myaxmin(ﬂRl(x, ), e, (Y, 2)] [ xO X, yDY,z0Z}, (41)
which is characterised by the membership functiefimeéd by:
Hg ., (X Y) = mflxmin(ﬂRl (X, Y), g, (¥, 2)) (42)

7. Max-product composition: Assuming the same notation as used in the deindf the
max-min composition, the max-product compositiodefined as follows:

R o R, ={[(x.2),max(tsg, (x,Y) Qlie, (v, 2)] | O X, y DY, 20 Z} (43)
characterised by the membership function:
Mg g, (X Y) = man(ﬂRl (X, y) Wg, (v, 2)) (44).

Another important concept in fuzzy logic theoryth® concept ofinguistic variable. A linguistic
variable is a device for systematising the use ofd& or sentences, expressed in a natural or
artificial language, for the purpose of charactegsthe values of variables and describing their
interrelations [Zadeh, 1977]. As its hame suggist,values of a linguistic variable are words or
sentences, rather than numbers. Each linguistiigevis a label of a fuzzy set, defined by a
membership function with gradual transition betwedetd membership and non-membership
[Zadeh, 1965]. In formal terms:

8. Linguistic variable: A linguistic variable is characterised by a quple &, T(x), X, G, M)
in whichx is the name of the variabl&(x) is the term-set of , that is, the collection of its
linguistic values (or linguistic terms)X is a universe of discours& is a syntactic rule
which generates the terms Tifx); and M is a semantic rule which associates with each
linguistic valueA its meaningM(A), whereM(A) denotes a fuzzy subsetXf The meaning
of a linguistic valueA is characterised by a membership functign, X - [0, 1], which
associates with eachin X a degree of membershipAn
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The concept of linguistic variable can be applied to signal asalyr example, the magnitude of
a signal can be viewed as a linguistic variable, whose linguiatices are given in the term set
T(Magnitude) = (very small; small; medium; big; very big). A graphical representation of the
linguistic variable Magnitude” is shown in figure 8.

Magnitude
(linguistic variable, x)

‘ . G Syntactic rule for

N \
FA Y generating
v \.\ linguistic values.
/l. A \-\
/ Vs N\ .
PY 4 4
verv small small medium big very big — f(magnitude): The

term set of
linguistic values.

(3 H M Semantic rule
4 v for giving each
linguistic value
ﬂlrl:l somindl purln.l'.’ l#r.llux'r'u-'-r.l yn’u,-_: yun L Il"- iTlUi.lﬂi]'lg.

.. ~ A —_— _
/ \/ . \\/ = membership
>~ / ‘\/>‘/\ AN

- >
0 magnitude x (i .
{base variable. x) Universe of

discourse

Figure 8: Linguistic variable Magnitude

The concepts of fuzzy logic and linguistic variable can bd asea framework to encode structured
knowledge in what is known as fuzzy associative memory [Kosko, 1992] fBaowt Harris, 1994]
(also referred to as fuzzy inference system [&ay 1997]), which can be defined as follows:

9. Fuzzy associative memory: A Fuzzy associative memory (FAM) is a rule-based system
based on fuzzy sets and fuzzy logic. An FAM system encodes aobaoknpound FAM
rules that associate multiple inputs or antecedent fuzzy ve#its multiple outputs or
consequent fuzzy sets. An FAM rule defines an input-output trandfonexpressed as a
logical if-then statement such as, “if this antecedent (grodpzaly input sets) occurs, then
this consequent (fuzzy output set) should be used”.

The knowledge in an FAM is encoded as a set of fuzzy rules and w iffezence algorithm

applied to these rules. For example, consider the following single sipgte output FAM system,
which has three triangular membership functions defined on eadibleathat represents the
linguistic termssmall, medium, andlarge:

FAM fuzzy rules
Ifx is small, theny is small
OR If x is medium, theny is medium
OR Ifxislarge, thenyislarge

Each fuzzy rule can be coded as a fuzzy relation, which is ceasact by a two-dimensional fuzzy
set. The combination of all three fuzzy rules through a compositioratopagenerates a fuzzy
relational surface. Figure 9 shows the fuzzy relational sarfgenerated for the FAM system
described above using the max-product composition. Note that the edclinpee relational
surface corresponds to each one of the three fuzzy rules, and tmabar ©r fuzzy region in the

y plane can be associated to each fuzzy rule.
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200 0

Figure 9: Example of a fuzzy relational surface for a single input, single output FAIsys
Fuzzy inference systems (FAMs), and in general fuzzy lbgis,found successful applications in a
wide variety of fields, such as automatic control, data claasidin, decision analysis, expert
systems, time series prediction, robotics, and pattern recognition.

2.3  Featureextraction algorithm

The stages involved in the SCFEA [&i al., 2004] are summarised in the flow chart shown in
Figure 10. A description of each one of these stages is given below.

Discrete cA; Fuzzy Accumulated
| Signal |—>| Normalisatio! |—> Wavelet Associative [ Firing Strengths —>| Normalisatiol |—>| Feature Vector|
Transform ch; Memory Vector

Figure 10: Flow chart of the SCFEA.

Normalisation input. The incoming signal(t) is normalised before performing discrete wavelet
transform as follows:

Ty — f(t)
rn= max(@bs( f (t)) (45).

After normalisation the incoming sampled values of the giverakige between the range [-1,1].
Note, that the normalisation is performed over a cycle or a givebemoh cycles of the incoming
signal.

Discrete wavelet transform. Using the multi-resolution method described in Section 2.1.2 to obtain
the DWT [Burruset al., 1998], the normalised signal is decomposed to its approximation and detail
signals, denoted here as () and c(t), respectively. The approximation signal contains the
high-scale, low-frequency components of the original signal, whéedetail signal contains the
low-scale, high-frequency components of the original signal. Noteadhig one level DWT
decomposition is performed, indicated by the subscript 1.

Fuzzy associative memory. The obtained approximation and detail signals can be interprete as
linguistic variables. The values of these linguistic variabdesthen be described using fuzzy sets
and identified using linguistic labels e.gery small, small, medium, big, etc. Each fuzzy set
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(linguistic value) is defined by a membership function with graduvahsition between full
membership and non-membership. By combining the fuzzy sets amougitkeses of discourse
for the approximation and detail signals, a two dimensions linguegbigroximation-detail
hyperspace is created. The hyperspace can be interpretbé &szzy-wavelet feature plane.
Several fuzzy regions cover this feature plane, each of wha$sisciated with a two-dimensional
fuzzy set. These fuzzy sets combinations form a set of fudeg or fuzzy associations and all
together form a fuzzy associative memory (FAM). Thereforedtta of discrete approximation
and detail signals can be scattered on the feature plamd. d&ta of approximation-detail pair has
its membership degrees to the fuzzy sets on the plane. Thetejoegaluating each FAM rule,
each approximation-detail pair activates or “fires” a fuzzy regiondifferent degree.

In formal terms, lets define the linguistic variablesandxp to represent the approximation and
detail signals cAt) and cD(t), respectively, obtained from a single level DWT decomposition.
These two variables are used as linguistic input variabldbetoSCFEA. The corresponding
linguistic value sets faxa andxp are given by,

l/A,l |/Dl
v v

L R R (46)
v v

ANA D,nD

whereTa andTp are the term sets for the approximation and detail signafseategely; v,; and
Vpi»1=12,...nAandj = 1,2,...nD are linguistic values faxa andxp, respectivelynA andnD are

the number of linguistic values foFA and TD, respectively. The corresponding membership
function sets can then be denoted as follows:

th,, (CA) t4,,(cD()
t D(t

g ent =| O oy =| e PO @7)
., (CAWD) 4., (cD()

where My, and M, are theith membership function and tligan membership function foxa and

Xp, respectivelycA andcD are the base variables fex and xp, respectively. The relationship
between the linguistic value set and the membership function set is expressed as:

Va1 iy, (CAD)) Sax(CA))
Va2r My, ,(CAD)) Sa2(CA[)

Sa(CA) =T, U 417, (CA(D)) = : = : , (48a)
Vanas by, (CA) | [ Sy (CA))
Vo1 Hy,, (€D (D)) Sp.1(cD(V))

S5 (eD(t) =T, O 47 (cD(1)) = VD‘Z’N”D‘;(CD(D) = SD’Z(?D(t)) (48b)

Vo o+ My, (CD(1))] | S50 (cD(D))
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where S,(cA(t)) and S,(cD {)) are the fuzzy set structures for the linguistidalalesx, andxp,
respectively. The symbal represents the major Cartesian product operatorjtaassociates in a
one-to-one way the elements of the two sets. Theyfset structureS,(cAt ()and S,(cD ¢ ))
together form the fuzzy basis set denoted by:

S(C(1)) ={Sa(cA(t)), S, (cD (1))} (49)
whereC(t) =[cAt) cD(t)]" is the crisp (not fuzzy) input vector to the fuZegture plane at time

Fuzzy regions on the plang - xp are formed by performing fuzzy associations (azfurelations)
between the fuzzy sets i®,(CA(t)) and S,(cD ()). These associations are defined by the

Cartesian product,(cA(t)) x S, (cD t ( )) The number of fuzzy regiomR on the feature plane is
determined by the cardinalities & (cAt (3nd S,(cD ¢ )), this isnR= nAxnD. Each fuzzy region

is thus defined as a fuzzy relation of two fuzzisselected from the basis &€C(t)). In general,
each fuzzy set structure provides one fuzzy setefmh fuzzy region. Thus, each region is

generated by associating each fuzzy s&,iicAt Widh each fuzzy set i, (cD t ( ))}his is:

I'*’ll(S(C(t))) :{ Sa1(CA1)), S5 1 (cD(1)} ={( Vass by, (CAD)), (Vo 1s Ay, (€D(1)))} = Vi D 43, (C(1))

I?’lnD(S(C(t))) ={Sa1(CA1)), S 0 (CD(t))} {(Var 4y, (CAD)) (Vo o My, (CD(DN)} =Vyp O 410 (C())
z;(S(C(t))) ={Sx(cA)), Sm(CD(t))} {(Vaz i, , (CAD)). (Vo 1 K4y, (CD(D)))} =V, O 45, (C(1)) (50)

Ran(S(C(t))) ={Sx2(cA), SDnD(CD(t))} =Wz by, , (CAON Vo s My, (CDO))} = Va0 T s 0 (CI1))

I%MD(S(C(t))) ={Sam(CA1): S 0 (CD(t))} =HWVami by, CAON Vo 0 iy, (€O} =Virro 0 Honn (C(1)

Therefore, théth, jth fuzzy region can be defined as:

R (S(C(1))) ={Sa; (CA(1)), S5 (D)} ={(V i 44, (CAM))), (Vp j. 4, (D)} =V, ; T 44 (C(1))
..(51)

whereV, ; =(v,;,V; ;) is the fuzzy region linguistic value set for ftig jth fuzzy regiorR ; on the
feature plane, and,ui’].(C(t)):(uVA‘i(cA(t)),,uVva(cD(t )))is the corresponding fuzzy region

membership function set. Hence, a firing conditiontheith, jth region on the feature plane can
be expressed in linguistic terms as a fuzzy rule:

“RegionR;; is activated ifXa is v,; andxp is v ;)" (52)

Note that the conditiorx{ is v,; andxp is v, ;) can be represented as a two-dimensional fuzzy set

obtained by performing the Cartesian product betwibe corresponding membership functions.
The combination of all the two-dimensional fuzzyssguzzy rules) through a composition operator
generates a fuzzy relational surface or FAM. Fglit shows an example of a feature plane and
relational surface generated for a system withetlfuezy sets defined for the linguistic varialigs
and three fuzzy sets defined for the linguisticialalesxp. The surface was generated using the
max-product composition operator.
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Figure 11: Feature plane generated using the max-product composition operator.

The firing strength or degree of activation of ttig jth fuzzy region on the feature plane is given
by,

(x5 G, (1) = OR ;(S(C(1)) (53),

where [ is the fuzzy intersection operator, which can be any t-norm opergt; O(V, ;) is the
firing condition stated asX, =v,; UX, =V, ;" and £, is the firing strength calculated as:

B, = ;(C(1) = 4, (cA)) U, (cD(1)) (54).
Adopting the algebraic product as the t-norm operator, then the firing strenigble gien by:
B = H,, (cA)) Lk, (cD(1)) (55).

Equation (55) states that the degree in which the fuzzy rdgjois activated (fired) is given by
multiplying the degree in which the data paA(t) is member of the fuzzy set,; by the degree in
which the data pointD(t) is member of the fuzzy set, ;. Therefore, if a data pair (ef), cDi(t))

is corresponding tacA(t), cD(t)), then this data pair will fire or activate in some degaehene of
the fuzzy regions in the feature plane, value obtained applying (55).

Accumulated firing strength vector. Assuming that the original signgt) is sampled and there are
No data points among a cycle, remember fftathas been assumed to be a periodic (cyclic) signal
and it is processed cycle by cycle, then after performingene DWT decomposition, as defined

in section 2.1.2 both the approximation and detail signals will Hdye dafta points. Each
approximation-detail pair (cAt), cDi(t)), t= 1,2,..., N, /2will have its firing strength or degree of

membership to each one of the fuzzy regions on the feature pldnes, the accumulated firing
strength for théth, jth fuzzy region can be written as,

20



g =3 8,0 =3, cA) 34, (@ON) 2

After processing al data pairs {(e@, cDi(t)), t= 1,2,..., N, /2, the accumulated firing strengths

for the fuzzy regions on the feature plane are collected tagkthferm the feature vector for a
cycle of the signdi(t). The feature vector can then be expressed as:

[ Ny/2

acc Z (4, (CA() T, (cD(1)))

11
acc No/2

B= 12 - tzzll (,UVAII(CA(t)) HIVDIZ (cD(1))) (57).

acc
nA,nD

No/2 )
Z (4, (cA) Lk,  (cD(t)))

Normalisation output. Finally, the feature vector (57) is normalised to a unitoreict order to
minimise the sampling effect [lat al., 2004]. In mathematical terms the normalisation to a unit
vector is given by,

acc
11

By = nA nDl 12 (58)
BSarr| e

The normalised feature vector (58) is the output of the SCFEA.

3 Soft computing featur e extraction algorithm applied to tie bar data

In this section feature extraction results are presented pondisg to the SCFEA applied to
extract damage-sensitive information from measured responsefdhtatie bar system component
of the main rotor hub of a Lynx Helicopter. These results correspoddta gathered in six tests
where several tie bars have been subjected to high level grougabaind (G-A-G) cyclic load
testing until failure. As the signals obtained from the teate a cyclic behaviour, feature vectors
are extracted for every cycle on these signals, among esich kaving available the feature
vectors, a comparison analysis is performed by calculatingrihle and Model Assurance Criteria
(MAC) between a selected reference feature vector and treniag extracted feature vectors. In
this way, the dynamic behaviour of the tie bars before the poimitlafd is expressed in terms of
the variation of the extracted feature vectors over time and wdrapared to a reference feature
vector. Results of feature extraction and comparison analyspgresented by test and by tie bar.
From the comparison analysis it is clear that a patteergas in the data corresponding to the tie
bar that has failed.

Tests of several tie bars were carried out by Westlangur@ose built test rig. Two tie bars were
installed back to back in the test rig. Then cyclic twist andl d0ads were applied to the tie bars
simulating a high level G-A-G cycle load, and tested until fajlwvith varying results [Gorton,
2006]. Table | summarises the tests carried out and corresponditig.reblote that a test is
carried out until one of the tie bars fails (with an exceptiorsh 5, were no failure was reached).
The axial load (kN), the angle of twist (degrees), and thetisvMoar extension displacements (mm)
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were the parameters measured, constantly monitored and recordedigital chart recorder and

stored in computer files. Therefore, soft computing featureaixtraand comparison analysis has
been carried out for each one of the measured parameters. Tiggssanas been carried out both
by test and by tie bar and results are presented in the next sections.

Tablel: Summary of the test completed

Test| Tie Bar Previous Usage Tensile Load Cycles Remarks
No. | Serial No.| (Flight Hours+cycles) (KN) Completed
1 | AET7119 | 671.3FH -1.0t0 330.6 216
LJAO404 | 519.0 FH Failed
2 | AET7119 | 671.3 FH+216 cyc. |-1.0to 330.6 778
BAH4263 Failed
3 | AET7119 | 671.3 FH+994 cyc. | +0.7 to 330.6 7026 Failed
AEX5714 | 884.7 FH
4 | LJA0399 +0.7 to 330.6 1296 Failed
AEX5714 | 884.7 FH+7026 cyc. Unfailed
5 | LK0034 0 FH +0.4 to 285/290 | 24485 Lord Corp. Man.
LK0046 0FH Lord Corp. Man.
6 | LJA0401 | 69.4 FH +0.7 to 285/290 | 18553
LJA1440 0 FH (New) +0.7 to 330.6 +3120 Failed
7 | LJA0401 | 69.4 FH+21673 cyc. | +0.7 to 330.6 3845 Failed
LJA2061 | O FH (New) Unfailed

3.1  Algorithm implementation

The SCFEA presented in section 2.3 was implemented in the MATRIABIink simulation
environment. First the process of normalisation is carried yirhplemented equation (45). After
normalisation, the DWT given in Section 2.1.2 was implemented ubmgHtar wavelet (the
simplest wavelet) decomposition filter [Daubechies, 1992]. The appabxin-detail data pairs
(CA4(t),cDx(t)) obtained from a single level DWT are used then for featuraaion with the fuzzy
logic based approach as given in Section 2.3.

Two linguistic variables are definedh and xp to represent the approximation and detail signals
(cAa(t),cDa(t)), respectively. The corresponding base variables are denat@daadcD for x4 and

Xp, respectively. The linguistic value s@ig andTp and the corresponding membership functions
for xa andxp are given as follows:

'NB | Uy (CA(L)) |
NM NB My (CA(1)) Hyg (€D(t))
T = NS andT, = NS = Hhs(CAD) | d = Hys(cD(1))
PS Hps (CA(t)) Hps (€D (1))
PM PB Hen (CA(L)) Hes (CD(1))
 PB | | Heg (CA(1)) |

Thus, six fuzzy sets were defined fqr (associated with the approximation signak)cand four
fuzzy sets were defined fap (associated with the detail signal¢D The fuzzy sets terms mean:
NB = Negative Big, NM = Negative Medium, NS = NeagatSmall, PS = Positive Small, PM =
Positive Medium, and PB = Positive Big. The asat®d membership functions were defined using
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triangular functions as is shown in figure 12. The two-dimensioyrspace or FAM generated
by combining the fuzzy sets for the approximation and detail sigaahown in figure 13 together
with the generated feature plane.

Each one of the rules generated by combining the fuzzy sets fateth# and approximation

signals is listed in figure 14(a). As shown in figure 13, each dafses a fuzzy region in the
feature plane; the identification of these fuzzy regions wittctineesponding fuzzy rule number is
given in figure 14(b).

1 NB NM NS PS PM PH 1 NB NS PS P
H U
0.5r 1 0.5¢ 1
0 v ; / / v 0 ; ; ; ; n
-1.5 -1 -0.5 0 1 0.5 15 -1.5 -1 -0.5 0 1 0.5 15
cA cD

Figure 12: Universes of discourse and membership functions for the approximation and detalil
signals. The Greek symbglis used to represent the degree of membership value.

FAM (max-prod composition)
FAM (max-prod composition)

N i i >

Figure 13: Two-dimensional hyperspace or FAM generated by combining the fuzzypséts f
approximation and detail signals using the max-product composition.

3.2  Featureextraction and comparison analysisresults

In this section results from feature extraction and comparisoysaare presented both by test
and by tie bar for each one of the measured parameterst®P2teo 7 (the analysis was not carried
out for test 1 due that data results for this test were not provideofe that a feature vector was

extracted for every cycle of a given signal.

In order to perform comparison between extracted feature vettorsneasures were defined. The
angle between two vectoxsandy is defined as:

(y'x)

X I

and the Model Assurance Criterion (MAC) value is defined as:

6(x,y) =cos* (59)

23



X"y
(X'X)(Y"y)

Rules

MAC(X,Yy) =

(60).

R1: Region 1 is activated if (g4 NB and clis NB) R13: Region 13 is activated if (¢/s PS and cbis NB)
R2: Region 2 is activated if (g4 NB and cis NS) R14: Region 14 is activated if (¢/s PS and cbis NS)
R3: Region 3 is activated if (g4 NB and cRis PS) R15: Region 15 is activated if (¢ PS and cbis PS)
R4:  Region 4 is activated if (g4 NB and cRis PB) R16: Region 16 is activated if (¢ PS and cDis PB)
R5:  Region 5 is activated if (g4 NM and cQis NB) R17: Region 17 is activated if (¢/s PM and cRis NB)
R6: Region 6 is activated if (g4 NM and cRis NS) R18: Region 18 is activated if (¢/ PM and cBis NS)
R7: Region 7 is activated if (g4 NM and cRis PS) R19: Region 19 is activated if (¢/ PM and cBis PS)
R8: Region 8 is activated if (g4 NM and cRis PB) R20: Region 20 is activated if (¢/ PM and cBis PB)
R9:  Region 9 is activated if (gAs NS and cbis NB) R21: Region 21 is activated if (¢/s PB and cbis NB)
R10: Region 10 is activated if (¢/s NS and cis NS) R22: Region 22 is activated if (¢/s PB and cbis NS)
R11: Region 11 is activated if (¢/s NS and cPis PS) R23: Region 23 is activated if (¢/s PB and cbis PS)
R12: Region 12 is activated if (¢/s NS and cPis PB) R24: Region 24 is activated if (¢/ PB and cPis PB)

(a)
Fuzzy Regions
PB R 4 R 8 R12 R16 R20 R 24
PS R 3 R7 R11 R15 R19 R 23
cD
N S R 2 R 6 R10 R14 R 18 R 22
N B R1 R5 R 9 R 13 R17 R21
N B N M N S PS P M PB
CA 1
(b)

Figure 14: (a) Rules generated by combining the fuzzy sets for the detail and approsimat
signals. (b) Fuzzy regions and corresponding fuzzy rule number.

Therefore, if a periodic (cyclic) signal is not changing diree and a feature vector is extracted for
every cycle of the signal, then the angle between two feakators corresponding to two cycles of
the signal taken at different periods of time should be near to(aedothe MAC value should be
near to one). Furthermore, if a cycle is taken as a refersignal and its corresponding feature
vector is compared with the feature vectors extracted fromeswahead in time, then in addition to
the angles being near to zero the variation of the angle vahesd be small as well. On the
contrary, if the signal is changing over time, e.g. the signadlitude is bigger and bigger at each
consecutive cycle, then this change will be indicated by a ggpamngle value (and a decreasing
MAC value) between the reference feature vector and theréeaectors corresponding to cycles
ahead in time.

First, examples of two cycles of the measured signals amddbresponding extracted feature
vectors are shown in figure 15. Both cycles are from measurentaken in test 3. The
comparison analysis results are presented in the next sections.

3.21 Comparison analysis by test
In this section the results from a comparison analysis perfoloyetest are presented. A
comparison analysis by test is performed by selecting eerafe feature vector and calculating the

angle and MAC values when it is compared with the remainingrieatctors among a test. This
will produce two curves referred to as angle feature veamparison analysis curve and MAC
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feature vector comparison analysis curve, respectively. Theref@ comparison analyses are
presented, corresponding to feature extraction vectors obtainedsfer2tdo 7. In all of these
comparison analyses the feature vector corresponding to cycle niétbhas been selected as the
reference feature vector. This cycle number is selected cangidleat a warming up process may
be present at the start of each test and 100 cycles are diooulgé test responses to settle down.
In addition, it is assumed that the signals obtained in this cyeleepresentative of the signals
obtained for the undamaged state of the corresponding tie bguse$-il6 to 21 show the feature
vector comparison analysis curves corresponding to tests 2 to 6.thiNbteas the tests were
performed over a pair of tie bars, the term TB1 refers tbarel and the term TB2 refers to tie bar
2. The serial numbers of the corresponding tie bars undemtkstientified as TB1 and TB2 are
indicated in each figure.
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Figure 15: (a) Measured signals at cycle 10 and (b) corresponding feature vedtdeagured
signals at cycle 7015 and (d) corresponding feature vectors. Both cycles aredasnrements
taken in test 3.
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Figure 16: Test 2, TB1=AE7119, TB2=BAH4263, (a) angle feature vector comparison analysis
curve, (b) MAC feature vector comparison analysis curve.
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Figure17: Test 3, TB1=AE7119, TB2=AEX5714, (a) angle feature vector comparison analysis
curve, (b) MAC feature vector comparison analysis curve.
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Figure18: Test 4, TB1=LJA0399, TB2=AEX5714, (a) angle feature vector comparison analysis
curve, (b) MAC feature vector comparison analysis curve.
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Figure19: Test 5, TB1=LK0034, TB2=LK0046, (a) angle feature vector comparison analysis
curve, (b) MAC feature vector comparison analysis curve.
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Figure 20: Test 6, TB1=LJA0401, TB2= LJA1440, (a) angle feature vector comparison analysi
curve, (b) MAC feature vector comparison analysis curve.
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Figure2l: Test 7, TB1=LJA0401, TB2= LJA2061, (a) angle feature vector comparison analysi
curve, (b) MAC feature vector comparison analysis curve.
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3.2.2 Comparison analysis by tie bar

In this section the results from the comparison analysis perfobydde bar are presented. A

comparison analysis by tie bar of the extracted featur®ngers performed considering individual

tie bars among all the tests. Note from Table | that skgtthe tie bars are used only in one test,
thus its comparison analysis by tie bar is the same astresponding comparison analysis by test,
which means that their results have already been presented pnetheus section. The tie bars

which comparison analysis by tie bar is the same as the cempamalysis by test are listed

below:

Comparison analysis for tie bar BAH4263 is the same as that for test 2, showrnrenIegu
Comparison analysis for tie bar LJA0399 is the same as that for test 4, shoguren 1.
Comparison analysis for tie bar LKO034 is the same as that for test 5, showari Fg
Comparison analysis for tie bar LK0046 is the same as that for test 5, showuare Fg
Comparison analysis for tie bar LJA1440 is the same as that for test 6, shogurenZt.
Comparison analysis for tie bar LJA2061 is the same as that for test 7, shogurenZi.

Hence, only three tie bars were employed in more than twa tésorder to appreciate the change
in the feature vectors over the whole utilisation of these tis, bl comparative analysis is
performed taken as reference the feature vector extracteccfden 100 and comparing it with the
remaining feature vectors for the whole utilisation of the tie bars.

The comparison analysis for tie bar AET7119 is the combinationta? #sd test 3 and it is shown
in figure 22.

The comparison analysis for tie bar AEX5714 is the combinatiorsb8tand test 4 and it is shown
in figure 23.

Finally, the comparison analysis for tie bar LJA0401 is the cortibmaf test 6 and test 7 and it is
shown in figure 24.
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Figure22: TB1=AET7119, (a) angle feature vector comparison analysis curve, (b) M@ de
vector comparison analysis curve. The first 778 cycles correspond to test 2, whibet fHg26e
cycles correspond to test 3.
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Figure 23: TB2= AEX5714, (a) angle feature vector comparison analysis curve, (b) MAGdea
vector comparison analysis curve. The first 7026 cycles correspond to test 3he/hiéxt 1296

cycles correspond to test 4.
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Figure24: TB1= LJA0401, (a) angle feature vector comparison analysis curve, (b) Ket@¢
vector comparison analysis curve. The first 8307 cycles correspond to test 6, whibet B@iHe
cycles correspond to test 7.

3  Analysisof results

The idea of performing a comparison analysis is to look at yhandic behaviour of the tie bars
when approaching failure through looking at the changing behaviour dédhere vectors over
time. Thus, from the analysis of figures 16 to 24 several obsergatan be made. These

0]

bservations are made considering the angle as comparison medsle&eimilar interpretations

can be made using the MAC value as comparison measure:

1. A clear pattern when approaching failure can be appreciattdte ioomparison analysis
curves corresponding to the change of extracted feature vectors from disgiasggnals of
tie bars AET7119, LJA0399, LJA1440, and LJA0401, corresponding to analysis adsults
tests 3, 4, 6 and 7, respectively. This pattern emerges as adasnhent (resembling a
monotonically increasing function) in the angle values betweereteesnce feature vector
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from an undamaged condition, extracted from a displacement cyale early stage of the
test, and the feature vectors extracted from displacement sigies approaching the point
of failure later in time. This pattern also can be observedmarkedly change in the slope
of the curve representing the angle values between the redefemttire vector and the
feature vectors corresponding to displacement cycles near theop&aritire. This change
in slope is more drastic in tests 3 and 6 than the observed in tests 4 and 7.

2. The comparison analysis curves corresponding to the displacemgpalssior tie bars
AET7119 and LJA1440 in tests 3 and 6 resemble step functions near thefpaiiire.
On the other hand, the comparison analysis curves corresponding tospiheceinent
signals for tie bars LJA0399 and LJA0401 in tests 4 and 7 reseawpbnential functions
near the point of failure.

3. By inspecting the angle feature vector comparison analysie,dtican be said that, while
the dynamic behaviour of the tie bars looks linear far from gbiat of failure, this
behaviour shifts to a non-linear behaviour near the point of failure.

4. For the case of test 2 and tie bars AET7119 and BAH4263, no apprecidadte pan be
appreciated in the comparison analysis results for the displacesigeals. However, a
high variability is observed on the angle values obtained when the gsarpanalysis is
performed, meaning that a high variability exists in the feataotor values extracted from
the displacement signals. In addition, it is noticed in this testthe extracted feature
vectors, corresponding to the axial load cyclic signal, slowlycouastantly change over
time. This means that the amplitude of the applied axial l@gdisivas also changing over
the test.

5. For the case of test 5 and tie bars LK0O034 and LK0046, even thougbfribeen failed, a
pattern is clearly appreciated in the feature vectors corresgpndinthe displacement
signals of tie bar LKO046. This behaviour is similar to that obsenveaie bars LJA0399
and LJA0401, where an exponential-like curve of the angle comparisoysianalirve is
appreciated. This may mean that tie bar LKO046 was near thegpdailure when the test
was stopped.

6. The same patterns explained in the points 1 to 4 above can beatpprecthe comparison
analysis by tie bar plots.

7. In was noted that some of the tests had been interrupted and th@stedinnaintaining the
same tie bars under tests. These interruptions are capturdae bigature extraction
algorithm and reflected in the form of transients in the displacérmomparison analysis
curves. When looking directly to the corresponding original gees, it is observed that
these results are obtained because the initial cycles oéskerted tests are distorted and,
therefore, quite different from the reference cycles.

8. Although the dynamic behaviour of the tie bars near the point ofddilas similarities, e.g.,
a monotonically increasing angle feature vector comparison @atysve and non-
linearity, their dynamic behaviour is quite different and partictdaeach tie bar, e.g. each
one fails at a different number of cycles.

9. From the comparison curves, it is observed that small variatiaghe iaxial load have a big
impact in the displacement signal response.

34 Validation of the SCFEA

In this section the proposed SCFEA is validated using an adaptive neaso#hference system
(ANFIS) network [Janget al., 1997]. The validation process consists in performing system
identification of the unknown system, the analysed tie bar, enmgam ANFIS network using a
set of available input-output patterns, e.g. twist and axial loadsurtements as inputs and
displacement measurements as output, as is illustrated in f&fi(eg. The structure of the
employed ANFIS network is shown in figure 25 (b). Once the ANTe8vork has been trained, it
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is used to predict the output of the system for the unseen inputnpatt®herefore, the root mean
square error (RMSE) value is calculated for every cycle ofinpet signals. These results are
plotted to obtain a RMSE evolution curve. This curve and the angle ievotuirve from the soft
computing feature extraction approach are correlated in order éovile¢ if they show a linear
relationship. If this is the case, then the correlation coeffiavill be near to 1 meaning that both
approaches are consistent and this will validate the soft computing feataiertapproach.

The ANFIS network shown if figure 25(b) was implemented andulsitad using the
MATLAB/Simulink simulation environment. Measurement data from 4estere used to train two
ANFIS networks (one for each tie bar). Table Il shows the numibeycles used as patterns for
training and for validation, the number of epochs needed to train theSAN#orks, the RMSE
value obtained after training, and the RMSE values obtained after validation.

Tablell: ANFIS RMSE training and validation results

No. Cyc. | No. Cyc. | Epochs | RMSE RMSE

Training | Testing Training | Training | Testing
Disp TB1 | 10 (10-19) 10 (20-29) 500 0.034509 0.03718
Disp TB2 | 10 (10-19)] 10 (20-29) 500 0.074661 0.07469

The RMSE evolution curve and the angle evolution curve corresponding tdieder tested in

test 4 are shown in Figures 26(a) and 26(b), respectively. Ndtese figures that both curves are
very similar in shape and trend. The correlation coefficibatareen the corresponding curves for
tie bar 1 (LJA0399) and tie bar 2 (AEX5714) af@MSE TB1, ang. TB1 disp) = 0.9792 and
r(RMSE TB1, ang. TB1 disp) = 0.9653, respectively. Therefore, these values show that the
corresponding curves for both tie bars are highly correlated, nedinat the results from two
different approaches are similar, thus validating the SCFEA approach.
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Figure 25: (a) System identification using an ANFIS network; (b) ANFIS structure
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3.5 Tiebar critical degradation detection

In this section results of work carried out to develop a tie biéicatr degradation detection

algorithm based on pattern recognition of the features extragtde ISCFEA are presented. Two
approaches have been considered, statistical process control 8P @)onotonically increasing

function detection.

SPC is a technique commonly used to monitor the manufacturing priocesder to reduce
variability and build quality into the product [Montgomery, 2005]. In doamtext of structural
damage detection, the SPC method consists in monitoring the vayiabiltome characteristic
sensitive to damage in order to detect shifts or departures frassamed state of health. For this
technique, a control chart is built, which is a graphical displahe@idamage-sensitive feature that
has been measured or computed versus the sample number or timeonbkechart contains a
centre line (CL), an upper control limit (UCL), and a lower conlirolt (LCL) defined based on
the statistics of the monitored feature [Montgomery, 2005]. Thee@tesents the average value of
the measured feature corresponding to a healthy state ofrtictust. The UCL and LCL are
chosen so that if no damage is present in the structure, then aleaflyhe measured features will
fall between the control limits. Thus, as long as the featursunements plot within the control
limits, the structure is assumed to be in a healthy state. etywa measured feature that plots
outside of the control limits is interpreted as evidence thattthetgre has evolved to a state of
damage [Sohuet al., 2000]. In the case of the tie bar, the feature assumed asveetssdamage
and thus the quantity to be monitored, is the angle between thenoefdeature vector and the
remaining extracted feature vectors corresponding to the displacegrait s

The SPC method is exemplified using the features extracteddatemeasurements corresponding
to test 4 (see section 3). As tie bars are tested in coupkeassumed that there are two sets of
extracted feature vectors corresponding to two sets of independasune@ents. Thus, in order to
build the control chart, the angle mean value denotedig®nd the angle standard deviation value
denoted asjy are calculated considering the angle value data obtainedtions8&c The CL,
which is given by the valugys, is calculated by first averaging the two angle measoresvery
cycle and then averaging all the obtained values. The standardiateviaue gy, is calculated
based on the averages of angle values obtained for every cycle. lhard LCL are then
obtained based on thg;y, value as:

uUcCL,.,LCL,. = +7 | Zaw 61
disp ? disp_ludisp— a \/a ( )

whereZ, is the value of a standard normal distribution with zero mean andariance such that

the cumulative probability is 100@)%, in this caseZ, = 3 which represent the 99.73%
confidencep is the size of each subgroup, here as there are two setasdine@ents 2 groups are
assumed. The generated control chart is shown in figures 2italCdegradation detection is
declared when the average measured angle value plots béyhdCt line for more than two

consecutive cycles. Note that values below the LCL do not indicéitakcdamage; in fact lower

angle values indicate marginal change between feature vectors.

The control limits in the chart shown in figure 27 are fixed anerdened considering theo3

limits from the statistics of the whole set of angle measurementeddry comparing the extracted
feature vectors from the displacement signals from both tie bArssecond analysis can be
performed considering each set of measurements separatelycamte achieved by building two
control charts, one for each tie bar and corresponding extractedefeactors. In this case it is
proposed to calculate the CL, UCL and LCL in a dynamic manner. i hise angle mean value
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corresponding to each tie bay, is calculated using the running mean, which means that the mean
value is updated every cycle and so there are the control limits UCL and L{elLreJultant control
charts for the two tie bars used in test 4 are shown in figurdNd8& that, as in the previous case,
critical damage detection is declared when more than two consecutive points plot heyod t
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Figure 28: Control charts using dynamic control limits; (a) TB1, (b) TB2.

The second approach to detect critical damage detection is basedeoting if the angle feature
vector comparison analysis curve represents a strictly innge&snction. A functiorf is strictly
increasing if, whenever<y, thenf(x) <f(y). Thus the critical degradation detection algorithm uses
the reference feature vector and compares it with the currel® digplacement feature vector to
track and identify degraded tie bar condition. The angle magniasigtant of this comparison is
continuously monitored. If in time (as the cycle number increéise) angle feature vector
comparison curve approaches a strictly increasing function forterval of more than 20 cycles,
then a critical degradation of the tie bar is declared. Figfrshows the result of this method
applied to the extracted features from the tie bars used in test 4.
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Figure 29: Critical degradation detection by detecting strictly increasingtimmaga) TB1, (b)

TB2.
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3.6 Real time simulation

Simulation in real-time of the proposed SCFEA applied to tie b \was carried out using the
Simulink-dSPACE simulation environment (DS1104 R&D Controller Boardydier to investigate
the size of memory requirements for algorithm implementatione algorithm was implemented
up to the stage of reporting the extracted feature vectorshisl simulation two PC’s with dSPACE
systems connected to them were used as is represented ir3figuiide first PC-dSPACE system
was used to send-out, in real time, through a DAC, measured ti@atsar This simulated the
process of obtaining measurements from an actual tie bar test. The s€ed8&RCE system was
used to read the data though an ADC and run the feature extraction algorithm. Thime SQG¥E
algorithm was compiled and loaded to the second dSPACE board. Tloé $irzecompiled object
file .ppc (loaded to the dSPACE board) was 575 KB and the maximum processing sirfhgusa

nbuffer
! | E High-Fr
1 b Badlink |l I Bad Link 3. igh-Freq
fiing_st
1 Frem File Gain DS1104DAC_C1 | DE1104ADC_CE E, Low-Freq
I -
| || Unbuffert FAM
___________ -=-==h
PC + dSPACE '
e
board1

PC + dSPACE
board 2

Figure 30: Simulink model used for real time simulation of the SCFEA applied to tie bar data.

4 Soft computing featur e extraction algorithm applied to pitch link data

In this section, results of feature extraction and criticehmdetection algorithms developed to
detect damage in the bearing system of pitch link (referredtbexe pitch link system) part of the
main rotor hub of a Lynx Helicopter are presented. The algorithmeigts of two stages: feature
extraction and statistical model development for feature distaton. The feature extraction part
of the algorithm is based on the SCFEA proposed in Section 2.3aldtérthm is applied to strain
time-histories collected at the University of Bristol (UB)rh experiments where two pitch links,
one with negligible wear and the other noticeably worn, were subljexta sinusoidal stress cycle
of tension and compression with forces representative of those eneouimerperation. Results
show that undamaged (unworn) and damaged (worn) pitch links can be detettedccessfully
classified.

In the previous sections a feature extraction algorithm,regfeio as SCFEA combining wavelet
theory and fuzzy logic theory was proposed to monitor the state cdddggm of tie bars. The
structure of the proposed SCFEA is used in this section to exiaachge sensitive features to
detect damage in the bearing system of pitch link. In this develdpiies assumed that strain
response signals from undamaged (unworn) and damaged (worn) systenasadable for
comparison and classification. Furthermore, it is assumed thatréie waveforms responses are
cyclic signals with a known frequency.
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4.1  Algorithm implementation

The SCFEA was implemented in the MATLAB/Simulink simulation emwvment and applied to
pitch link data that was obtained as will be explained laterter Aformalisation, the DWT was
implemented using the Haar wavelet decomposition filters. The apmban-detail data pairs
(CA4(t),cDu(t)) obtained from a single level DWT are used for feature extraction.

Two linguistic variables were defined andxp to represent the approximation and detail signals
(cAa(t),cDa(t)), respectively. The corresponding base variables are denotédaaslcD for x, and

Xp, respectively. The linguistic value sd@sandTp with the corresponding membership functions
for xa andxp are given as follows:

N N My (CA(L)) Hy (cD(1))
To=|ZE| andT, =| ZE |; p, =| Hze(CA1)) | and i, =| e (cD(1))
P P M (CA(L)) M (cD(1))

Thus, three fuzzy sets were definedxg@and three fuzzy sets were definedxgr The fuzzy sets
terms in both cases mean: N = Negative, ZE = Zea R = Positive. Figure 31(a) shows the
associated membership functions defined Xgrand for xp together with the two-dimensional
hyperspace generated by combining the fuzzy sethéapproximation and detail signals. Each
one of the rules generated by combining the fuety ®r the detail and approximation signals is
listed in figure 31(b).

The algorithm was applied to strain time-histogeiected from two experiments carried out at the
University of Bristol (UB). In these experimentgadt pitch-links, one with negligible wear and the
other noticeably worn, were set up in an InstrorcMiae as is shown in figure 32(a). The machine
was set up to give a sinusoidal stress cycle @ioanand compression, with forces representative of
those encountered in operation. A piezo-ceramichpsensor glued to the part holding the pin, see
figure 32(b), was connected to a storage oscillps@nd the waveforms obtained from the worn an
unworn pitch links were recorded. Examples of ¢train response signals obtained are shown in
figure 33(a). As the strain response signals ptesecyclic behaviour, the SCFEA was applied to
obtain a feature vector for every cycle of the rded signals. Examples of the feature vectors
obtained for an unworn and worn pitch links arevaman figure 33(b) for cycle 15.

N ZE P

Rules

R1: Region 1 is activated if (g4s N and cRis N)
R2:  Region 2 is activated if (g4s N and cRis ZE)
R3: Region 3 is activated if (g4s N and cDis P)
R4: Region 4 is activated if (gAs ZE and cRis N)
R5: Region 5 is activated if (gAs ZE and cBRis ZE)
R6: Region 6 is activated if (g4s ZE and cBis P)
R7: Region 7 is activated if (gAs P and cBis N)
R8: Region 8 is activated if (gAs P and cBis ZE)
R9:  Region 9 is activated if (gAs P and cBis P)

4:5?1 1 05 L@d 05 1 '1“5
cA1
(a) (b)
Figure 31: (a) Membership functions for the fuzzy sets defifa X, and forxp together with the
two-dimensional hyperspace generated by combimaduzzy sets. (b) Rules generated by
combining the fuzzy sets for the detail and appr@tion signals.
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(@)

(b)
Figure 32: (a) Pitch link test set up in an Instrom Machine; (b) Location of piezo-cessnsor.
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Figure 33: (a) Examples of the strain response waveforms obtained for unworn and worn pitch link
systems; (b) Example of the feature vectors obtained for unworn and worn pitcystiaks.

From experience of processing the tie bar data, it is knowmthadll the rules in the FAM are
activated and sensitive to damage. Therefore, a feature (oseldejion process is proposed based
on the energy content of the rule (or fuzzy region) activation sigrgthus, by calculating the rule
activation energies and comparing their magnitudes for unworn (unddimagd worn (damage)
cases, a subset of rules sensitive to damage can be sel€htedneans that the feature vector is
reduced to contain the components with highest energy and sensitive to damage.

From the rule activation energy analysis it was detectedthieatules R2, R5 and R8 have the
highest content of energy while the remaining rules have negligitdegy content. Therefore, the
feature vector is reduced to contain only three values, the ataach firing strengths
corresponding to rules R2, R5 and R8. Once this vector is normalisednib vector, it becomes
the output of the SCFEA. Note that this will reduce the compui@tiburden required to process
the algorithm due that, for real time implementation, the FAM kel formed only with these 3
rules (3 rules to be evaluated instead of 9 rules, in this case).
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The time histories of the extracted feature vectors for undagnaghworn) and damage (worn)
pitch links strain response signals are shown in figure 34. Im todketermine a reference feature
vector, and as only the signal for one example of undamaged pitctsyistem was provided,
simulation of undamaged systems was obtained by adding white nowser (ppectrum density =
1x10°% to the original undamaged signal. Ten undamaged pitch linknsystising different
random noise seeds were simulated. As each feature vectornesomtaly three values
(accumulated firing strengths for fuzzy rules 2, 5 and 8), pgossible to represent the feature
vectors as points in a 3-dimensional (3-D) space. Figure 35 shev#sD representation of all the
feature vectors corresponding to the unworn pitch link systems rfedtéiom the original signal
plus the 10 obtained by adding white noise) and the corresponding feattwes for a worn pitch
link system. Note that a feature vector is obtained for emgie of the signal (freq. approx. 5Hz),
and this is carried out up to a length time of 10 seconds. Thus eaclinpiignire 35 represents a
feature vector extracted from each cycle of the respectiae sesponse signal. From the same

figure it is apparent that two classes can be clearly degaranworn (undamaged) and worn
(damaged) pitch link systems.

-
-

Ace. firing strength
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Figure 34: Feature vector time histories for unworn and worn pitch link systems.
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Figure 35: 3-D representation of the feature vectors obtained for the unworn and worn pitch link
signals.

A reference or baseline feature vector was calculated bypging the obtained feature vectors for
all the unworn cases. The resultant reference vector was: R2=0.4%%£0,7R76, R8=0.4672.
Having available the reference feature vector, comparisons with the feattoes for the worn and
unworn signals were performed by calculating the afghetween them. This comparison was
carried out in order to determine a threshold which separates darfwgen) from undamaged
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(unworn) systems. This threshold value was fixe@ at2 degrees (none of the unworn feature
vectors when compared with the obtained reference feature vesribnvere than 2 degrees apart).
Therefore, if an unknown state pitch link strain response signarocessed, then a damage
detection alarm will be activated whenever the angle betiree reference feature vector and the
newly extracted feature vectors is equal to 2 or more degne@shis comparison is performed
cycle by cycle of the incoming signal. The damage detectaomalill indicate that the pitch link
is critically worn.

The effectiveness of the proposed feature extraction and damagéeatealgorithms was tested by
processing the unworn and worn signals presented in figure 33(angDie first 5 seconds of the

simulation, the reference feature vector was compared witHfetitare vectors obtain for the

unworn pitch link; while during the next 5 seconds of the simulation fleeerece feature vector

was compared with the feature vectors obtain for the worn pitkh Figure 36 presents the angle
comparison curve and the damage detection alarm flag (0 = no damage, 1 = damage)

Angle comparison curve Damage detection alarm flag
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. : : 12be D CRTRRPRREE: P e 4
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Figure 36: Damage detection results for the unworn and worn pitch link signals.

4.2  Real timesimulation

The damaged detection algorithm was simulated in real-timeg uia Simulink-dSPACE
simulation environment (DS1104 R&D Controller Board). The implementedemis shown in
figure 37, while the results are shown in figure 38.

o n
From File
* -
Gain D51104040_C1 [0.4719;0.7476,0.4672] D[z, 1] *
Angle

Constant Signal Specification v I
FEXTH angle
Angle
i - HF
Bad Link - High-frequency-ds
+ e
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Figure 37: Pitch Link damage feature extraction and damage detection model implememtad in r
time.

The time required to process the algorithm in real-time perted by dSPACE (turn around time)
is between 18 and 28 microseconds. T hus, the algorithm bandwidth is 36TKelzompiled
object file (.ppc) loaded to the DSP processor in the DS1104 boaeddizes of 723 KB. Note that
this file includes the data and the algorithm.
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Figure 38: Damage detection results obtained from the real time simulation.

5 Conclusions and futurework

In this document a feature extraction algorithm, referred teoftscomputing feature extraction
algorithm (SCFEA), has been proposed under the context of the WISD reseaech prbog results
of applying the SCFEA to data gathered from test performededrati and pitch link components
of the main rotor hub of a Lynx Helicopter have been presented. Insheotée bar, results from
data corresponding to six tests, where several tie bars wbpected to high level ground-air-
ground (G-A-G) cyclic load testing until failure, have been presenComparison analyses of the
extracted feature vectors, both by test and by tie bar, havepee®mmed. Two measures were
used to perform comparisons, the angle between vectors and the MAC Feadne the comparison
analyses curves, it is clear that a change can be agpteriahe dynamic behaviour of the tie bars
when they are approaching failure. This change can be obseneemylththe analysis of the
variation of the extracted feature vectors from the displanemignals. The results presented
indicate that a pattern can clearly be seen in the comparisgrsiar@lrve in 5 of the 6 tests. This
demonstrates the applicability of the proposed approach for theftéeskture extraction for Tie bar
data. Additionally, two methods for pattern recognition andcatitiegradation detection of tie bar
have been proposed. The first method uses techniques from stapstimeds control, while the
second is based on detecting strictly increasing function. Bothod® appear to detect critical
degradation of tie bars. However, a robust analysis of these proposesded based on the
statistical analysis considering a broader set of tie bars.

The SCFEA also was applied to strain data histories respormsasuhworn and worn bearing
systems of pitch link. Results show that the angle betweenetitaré vectors extracted from
signals corresponding to an unworn pitch link and the feature vectawctext from signals
corresponding to a worn pitch link can be used to discriminate betwesmntiine classes. Based on
the average feature vector for unworn pitch link and the averade betyveen this and feature
vectors from worn pitch link a threshold angle value was selectéds, values beyond the fixed
threshold were declared to come from a critically worn piick. Both off-line and real-time
simulations of the proposed feature extraction and damage detectioacdms have demonstrated
their applicability.

Although promising results have been obtained, it is necessararify ¢hat the available data
corresponds to controlled experiments performed on tests rigs amomahe actual rotorcraft. A
test rig for the pitch link system is currently under consimacand it is expected to deliver data,
which will be closer to the expected in a real rotorcraft @emarent. At the moment it is uncertain

39



if data from Tie bar system in the rotorcraft environment bellable to be measured. This means
that the proposed feature extraction approach will necessarilysnassl adjustment, modifications
or tuning to perform correctly in the real environment. The same Ioe said for the proposed
pattern recognition (damage detection) approaches. Thereforeydiepheent of the algorithms is
an ongoing task, which means that the algorithms will need to be dmtatdested each time new
data are available.
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